SYNAPTIC TRANSMISSION A synapse appears as the thin, dark area near the bottom center in this electron microscope picture of a section through cerebellar cortex of a rat. To the left of the synapse, an axon cut in cross section is filled with tiny round synaptic vesicles, in which neurotransmitter is stored. To the right a dendritic process (called a spine) can be seen coming off of a large dendritic branch, which runs horizontally across the picture near the top. (The two sausage- like dark structures in this dendrite are mitochondria.) The two membrane surfaces, of the axon and dendrite, come together at the synapse, where they are thicker and darker. A 20-nanometer cleft separates them. How are impulses started up in the first place, and what happens at the far end, when an impulse reaches the end of an axon? The part of the cell membrane at the terminal of an axon, which forms the first half of the synapse (the presynaptic membrane), is a specialized and remarkable machine. First, it contains special channels that respond to depolarization by opening and letting positively charged calcium ions through. Since the concentration of calcium (like that of sodium) is higher outside the cell than inside, opening the gates lets calcium flow in. In some way still not understood, this arrival of calcium inside the cell leads to the expulsion, across the membrane from inside to outside, of packages of special chemicals called neurotransmitters. About twenty transmitter chemicals have been identified, and to judge from the rate of new discoveries the total number may exceed fifty. Transmitter molecules are much smaller than protein molecules but are generally larger than sodium or calcium ions. Acetylcholine and noradrenaline are examples of neurotransmitters. When these molecules are released from the presynaptic terminal they quickly diffuse across the 0.02-micrometer synaptic gap to the postsynaptic membrane.